Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xing-You Xu, ${ }^{\mathbf{a} *}$ Tong-Tao Xu, ${ }^{\text {b }}$ Jian Gao, ${ }^{\text {c }}$ Da-Qi Wang ${ }^{\text {d }}$ and Lude Lu ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ${ }^{\mathbf{b}}$ Materials Chemistry Laboratory, Nanjing University of Science \& Technology, Nanjing 210094, People's Republic of China, ${ }^{\text {c }}$ Department of Chemical Engineering, Lianyungang Technical College, Lianyungang 222006, People's Republic of China, and dCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: xuxy@hhit.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.052$
$w R$ factor $=0.161$
Data-to-parameter ratio $=12.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Bis(4-methoxy-2-oxidoacetophenone)copper(II)

In the crystal structure of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3}\right)_{2}\right]$, the $\mathrm{Cu}^{\text {II }}$ atom, lying on a center of symmetry, has a squareplanar coordination formed by two paeonol anions.

Comment

Paeonol, or 2-hydroxy-4-methoxyacetophenone, is an effective component of many traditional Chinese medicines, and its derivatives have attracted considerable attention because of their potential biological properties (Liu et al., 2000; Xu et al., 2005). As part of our ongoing investigation on paeonol derivatives (Xu et al., 2006), we present here the structure of the title $\mathrm{Cu}^{\mathrm{II}}$ complex, (I).

(I)

The $\mathrm{Cu}^{\mathrm{II}}$ atom is coordinated in a square-planar geometry by the four O atoms of the paeonol anions, in which the hydroxyl groups are deprotonated (Fig. 1 and Table 1). Similar complexes commonly adopt a square-planar coordination geometry (Sillanpaa, 1991). The molecule is almost planar, the dihedral angle between the $\mathrm{Cu} 1 / \mathrm{O} 1 / \mathrm{O} 2 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ chelate ring and the benzene ring being $3.2(2)^{\circ}$.

Experimental

To a stirred solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ in 25 ml absolute methanol was added dropwise a solution of paeonol $(1.0 \mathrm{mmol})$ in 10 ml absolute methanol at room temperature. After stirring for 3 h at 320 K , the precipitate was filtered off, washed with methanol and dried in vacuo but this was not suitable for X-ray diffraction analysis. Single crystals of (I) were obtained by slow evaporation of the filtrates at ambient temperature after 10 d .

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3}\right)_{2}\right]$	$Z=2$
$M_{r}=393.86$	$D_{x}=1.643 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=8.871(4) \AA$	$\mu=1.41 \mathrm{~mm}^{-1}$
$b=13.763(6) \AA$	$T=298(2) \mathrm{K}$
$c=6.523(3) \AA$	Prism, green
$\beta=90.824(6)^{\circ}$	$0.32 \times 0.24 \times 0.21 \mathrm{~mm}$
$V=796.4(6) \AA^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.651, T_{\text {max }}=0.744$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.161$
$S=1.02$
1394 reflections
115 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0933 P)^{2} \\
&+1.4385 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.877(4)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.246(6)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.941(3)$	$\mathrm{O} 3-\mathrm{C} 6$	$1.345(6)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.308(6)$	$\mathrm{O} 3-\mathrm{C} 9$	$1.429(6)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$88.32(14)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$91.68(14)$

Symmetry code: (i) $-x,-y,-z$.
Methyl H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.96 \AA)$ and torsion angles were refined, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$. Aromatic H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

Figure 1
The molecular structure of (I) with 30% probability displacement ellipsoids. The suffix A corresponds to symmetry code (i) in Table 1.

SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The work was supported by the Key Laboratory of Marine Biotechnology of Jiangsu Province.

References

Bruker (2003). SAINT (Version 6.45A) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.
Liu, C.-Y., Wu, Y.-Z., Zhou, D.-X. \& Wang, C.-P. (2000). Chin. J. Biol., 17, $23-$ 24.

Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
Sillanpaa, E. R. J. (1991). Polyhedron, 10, 2051-2153.
Xu, T.-T., Xu, X.-Y., Lu, L.-D., Ni, J. \& Yang, X.-J. (2006). Acta Cryst. E62, m1408-m1409.
Xu, X.-Y., Gao, J., Chen, J., Li, S.-Z., Yang, X.-J. \& Song, H.-B. (2005). Chin. J. Struct. Chem. 24, 436-438.

